Postnatal expression pattern of HCN channel isoforms in thalamic neurons: relationship to maturation of thalamocortical oscillations.
نویسندگان
چکیده
Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels are the molecular substrate of the hyperpolarization-activated inward current (I(h)). Because the developmental profile of HCN channels in the thalamus is not well understood, we combined electrophysiological, molecular, immunohistochemical, EEG recordings in vivo, and computer modeling techniques to examine HCN gene expression and I(h) properties in rat thalamocortical relay (TC) neurons in the dorsal part of the lateral geniculate nucleus and the functional consequence of this maturation. Recordings of TC neurons revealed an approximate sixfold increase in I(h) density between postnatal day 3 (P3) and P106, which was accompanied by significantly altered current kinetics, cAMP sensitivity, and steady-state activation properties. Quantification on tissue levels revealed a significant developmental decrease in cAMP. Consequently the block of basal adenylyl cyclase activity was accompanied by a hyperpolarizing shift of the I(h) activation curve in young but not adult rats. Quantitative analyses of HCN channel isoforms revealed a steady increase of mRNA and protein expression levels of HCN1, HCN2, and HCN4 with reduced relative abundance of HCN4. Computer modeling in a simplified thalamic network indicated that the occurrence of rhythmic delta activity, which was present in the EEG at P12, differentially depended on I(h) conductance and modulation by cAMP at different developmental states. These data indicate that the developmental increase in I(h) density results from increased expression of three HCN channel isoforms and that isoform composition and intracellular cAMP levels interact in determining I(h) properties to enable progressive maturation of rhythmic slow-wave sleep activity patterns.
منابع مشابه
Specific and Non-Specific Thalamocortical Afferents to the Whisker–Related Sensory Cortical Region in Rats with Congenital Hypothyroidism
Background & Aims: Thyroid hormones are of great importance in the development of the central nervous system. Congenital hypothyroidism may affect the reorganization of specific and non-specific thalamocortical afferents to whisker–related sensory (wS1) corticol region in rats. Methods: Congenital hypothyroidism was induced by adding propylthiouracil (PTU) (25 ppm) to the rats...
متن کاملMembrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels.
By combining molecular biological, electrophysiological, immunological, and computer modeling techniques, we here demonstrate a counterbalancing contribution of TASK channels, underlying hyperpolarizing K+ leak currents, and HCN channels, underlying depolarizing Ih, to the resting membrane potential of thalamocortical relay (TC) neurons. RT-PCR experiments revealed the expression of TASK1, TASK...
متن کاملPostnatal development of spatial coding in the gravity sensing system
The critical maturation time of central otolith neurons in processing spatial orientations was examined in Sprague-Dawley rats. With the use of immuno-hybridization histochemical methods, we observed c-fos expression in vestibular nuclear neurons responding to transverse movement on the horizontal plane as early as P7 and those to antero-posterior stimulation as early as P9. In the inferior oli...
متن کاملPostnatal development of spatial coding in the gravity sensing system
The critical maturation time of central otolith neurons in processing spatial orientations was examined in Sprague-Dawley rats. With the use of immuno-hybridization histochemical methods, we observed c-fos expression in vestibular nuclear neurons responding to transverse movement on the horizontal plane as early as P7 and those to antero-posterior stimulation as early as P9. In the inferior oli...
متن کاملThe membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK 3 and HCN 2 channels
By combining molecular biological, electrophysiological, immunological and computer modeling techniques, we here demonstrate a counterbalancing contribution of TASK channels, underlying hyperpolarizing K leak currents, and HCN channels, underlying depolarizing Ih, to the resting membrane potential of thalamocortical relay (TC) neurons. RT-PCR experiments revealed the expression of TASK1, TASK3 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 27 شماره
صفحات -
تاریخ انتشار 2009